matematica


IDENTIDADES TRIGONOMETRICAS

las identidades trigonométricas verificables para cualquier valor permisible de la variable o variables que se consideren (es decir, para cualquier valor que pudieran tomar los ángulos sobre los que se aplican las funciones).
Estas identidades, son útiles siempre que se precise simplificar expresiones que incluyen funciones trigonométricas. Otra aplicación importante es el cálculo de integrales indefinidas de funciones no-trigonométricas: se suele usar una regla de sustitución con una función trigonométrica, y se simplifica entonces la integral resultante usando identidades trigonométricas.
Notación: se define cos2α, sen2α, etc; tales que sen2α es (sen α)2.


trigonométricas
 \tan{x} = \frac {\operatorname{sen}{x}} {\cos{x}} \qquad \cot{x} = \frac{1} {\tan{x}} = \frac{\cos{x}}{\operatorname{sen}{x}}
\sec{x} = \frac{1} {\cos{x}} \qquad \csc{x}= \frac{1}{\operatorname{sen}{x}}
Son más sencillas de probar en la circunferencia trigonométrica o goniométrica (que tiene radio igual a 1):
 \operatorname{sen}(x) = \operatorname{sen}(x + 2\pi) \qquad  \cos(x) = \cos(x + 2\pi) \qquad \tan(x) = \tan(x + \pi)
 \operatorname{sen}(-x) = \operatorname{sen}(x+\pi) \qquad \cos(-x) = -\cos(x+ \pi)
  \tan(-x) = -\tan(x) \qquad \cot(-x) = -\cot(x)
 \operatorname{sen}(x) = \cos\left(\frac{\pi}{2} - x\right)
  \qquad \cos(x) = \operatorname{sen}\left(\frac{\pi}{2}-x\right)
  \qquad  \tan(x) = \cot\left(\frac{\pi}{2} - x\right)
 
El plano cartesiano es un sistema de referencia respecto ya sea a un solo eje (línea recta), respecto a dos ejes (un plano) o respecto a tres ejes (en el espacio), perpendiculares entre sí (plano y espacio), que se cortan en un punto llamado origen de coordenadas. En el plano, las coordenadas cartesianas (o rectangulares) x e y se denominan abscisa y ordenada, respectivamente.
Cartesian-coordinate-system.svg
GEOMETRIA ANALITICA

Determinar las rectas del plano que pasan por el punto (x0,y0).
La ecuación de la recta ha de ser, como ya se sabe:
y = m x + b \,
Y ha de pasar por el punto (x0,y0), luego tendrá que cumplirse:
y_0 = m x_0 + b \,
Despejando b, tenemos esta ecuación:
 b= y_0 - m x_0 \,
Sustituyendo b en la ecuación general de la recta:
y = m x + (y_0 - m x_0) \,
Ordenando términos:
y = m (x- x_0) + y_0 \,
Esta ecuación define un haz de rectas en el plano que pasa por el punto (x0,y0), el valor de m es la pendiente de cada una de las rectas que forman parte del haz, m puede tomar un valor real cualesquiera.


FuncionLineal05.svg
Determinar